32S11-4,2,8-g3

graph data
Name 32S11-4,2,8-g3
Type Hyperbolic
Degree 32
Genus 3
Galois orbit size for 32S11-4,2,8-g3-path1 1
Galois orbit size for 32S11-4,2,8-g3-path10 1
Galois orbit size for 32S11-4,2,8-g3-path11 1
Galois orbit size for 32S11-4,2,8-g3-path2 1
Galois orbit size for 32S11-4,2,8-g3-path3 1
Galois orbit size for 32S11-4,2,8-g3-path4 1
Galois orbit size for 32S11-4,2,8-g3-path5 1
Galois orbit size for 32S11-4,2,8-g3-path6 1
Galois orbit size for 32S11-4,2,8-g3-path7 1
Galois orbit size for 32S11-4,2,8-g3-path8 1
Galois orbit size for 32S11-4,2,8-g3-path9 1
Passport size 1
Pointed size 1

Above

64S9-4,4,8-g13 64S20-4,4,8-g13 64S6-8,2,8-g9 64S10-8,2,8-g9 64S7-8,4,8-g17 64S8-4,2,8-g5 64S11-8,4,8-g17

Below

16T10-4,2,4-g1

Belyi Curve 1: 32S11-4,2,8-g3-path10

\(x_{1}^{4}x_{2} + x_{2}^{2} + 4x_{3}^{8}\)

Belyi Curve 1 Base Field: Rationals

Belyi Curve 1 Degree: 8

Belyi Curve 1 Naive Measure: 6

Belyi Map 1 Numerator:

\(-x_{1}^{16} + 32x_{1}^{8} - 256\)

Belyi Map 1 Denominator:

\(64x_{1}^{8}\)

Belyi Curve 2: 32S11-4,2,8-g3-path11

\(-x_{1}^{8} + x_{2}^{2} + x_{3}^{8}\)

Belyi Curve 2 Base Field: \(\nu^{2}+1\), discriminant [ <2, 2> ]

Belyi Curve 2 Degree: 8

Belyi Curve 2 Naive Measure: 3

Belyi Map 2 Numerator:

\(-1/4x_{2}^{4}\)

Belyi Map 2 Denominator:

\(x_{2}^{2} + 1\)

Belyi Curve 3: 32S11-4,2,8-g3-path2

\(-x_{1}^{8} + x_{2}^{2} + x_{3}^{8}\)

Belyi Curve 3 Base Field: \(\nu^{2}+1\), discriminant [ <2, 2> ]

Belyi Curve 3 Degree: 8

Belyi Curve 3 Naive Measure: 3

Belyi Map 3 Numerator:

\(-1/4x_{2}^{4}\)

Belyi Map 3 Denominator:

\(x_{2}^{2} + 1\)

Belyi Curve 4: 32S11-4,2,8-g3-path3

\(x_{1}^{8} + x_{2}^{2} - x_{3}^{8}\)

Belyi Curve 4 Base Field: Rationals

Belyi Curve 4 Degree: 8

Belyi Curve 4 Naive Measure: 3

Belyi Map 4 Numerator:

\(-x_{2}^{4}\)

Belyi Map 4 Denominator:

\(-4x_{2}^{2} + 4\)

Belyi Curve 5: 32S11-4,2,8-g3-path8

\(-4/4097x_{1}^{8} - 65536/16785409\nu x_{1}^{7}x_{3} + 114688/16785409x_{1}^{6}x_{3}^{2} + 114688/16785409\nu x_{1}^{5}x_{3}^{3} - 71680/16785409x_{1}^{4}x_{3}^{4} - 28672/16785409\nu x_{1}^{3}x_{3}^{5} + 7168/16785409x_{1}^{2}x_{3}^{6} + 1024/16785409\nu x_{1}x_{3}^{7} + x_{2}^{2} - 64/16785409x_{3}^{8}\)

Belyi Curve 5 Base Field: \(\nu^{2}+1\), discriminant [ <2, 2> ]

Belyi Curve 5 Degree: 8

Belyi Curve 5 Naive Measure: 134287370

Belyi Map 5 Numerator:

\(281749955297281/262144x_{2}^{4}\)

Belyi Map 5 Denominator:

\(-4095\nu x_{1}^{7}x_{2}^{2} + 1725322804709382602618969692800/325232303859151291990153313161217\nu x_{1}^{7} + 117506041/16388x_{1}^{6}x_{2}^{2} - 5452682363509264492780896748256/325232303859151291990153313161217x_{1}^{6} + 481019760633/67141636\nu x_{1}^{5}x_{2}^{2} - 7449676342587987131385204563424/325232303859151291990153313161217\nu x_{1}^{5} - 9870161535311837/2200634261536x_{1}^{4}x_{2}^{2} + 5698082462823664606644467284196/325232303859151291990153313161217x_{1}^{4} - 8050561018631286777/4507999284756496\nu x_{1}^{3}x_{2}^{2} + 2632368756535455942470435700456/325232303859151291990153313161217\nu x_{1}^{3} + 33588569699909816188921/73877092278589456448x_{1}^{2}x_{2}^{2} - 733834052352629830779521785826/325232303859151291990153313161217x_{1}^{2} + 17365863547386556216569855/302674447065381003067456\nu x_{1}x_{2}^{2} - 114217609755680366913866473470/325232303859151291990153313161217\nu x_{1} + 16785409/16x_{2}^{4} - 201796989634276490199202783231/19840915354029855513077875712x_{2}^{2} + 122433328218157068146891280383/5203716861746420671842453010579472\)

Belyi Curve 6: 32S11-4,2,8-g3-path9

\(-4/4097x_{1}^{8} - 65536/16785409\nu^{2}x_{1}^{7}x_{3} + 114688/16785409x_{1}^{6}x_{3}^{2} + 114688/16785409\nu^{2}x_{1}^{5}x_{3}^{3} - 71680/16785409x_{1}^{4}x_{3}^{4} - 28672/16785409\nu^{2}x_{1}^{3}x_{3}^{5} + 7168/16785409x_{1}^{2}x_{3}^{6} + 1024/16785409\nu^{2}x_{1}x_{3}^{7} + x_{2}^{2} - 64/16785409x_{3}^{8}\)

Belyi Curve 6 Base Field: \(\nu^{4}+1\), discriminant [ <2, 8> ]

Belyi Curve 6 Degree: 8

Belyi Curve 6 Naive Measure: 134287370

Belyi Map 6 Numerator:

\(281749955297281/262144x_{2}^{4}\)

Belyi Map 6 Denominator:

\(-4095\nu^{2}x_{1}^{7}x_{2}^{2} + 1725322804709382602618969692800/325232303859151291990153313161217\nu^{2}x_{1}^{7} + 117506041/16388x_{1}^{6}x_{2}^{2} - 5452682363509264492780896748256/325232303859151291990153313161217x_{1}^{6} + 481019760633/67141636\nu^{2}x_{1}^{5}x_{2}^{2} - 7449676342587987131385204563424/325232303859151291990153313161217\nu^{2}x_{1}^{5} - 9870161535311837/2200634261536x_{1}^{4}x_{2}^{2} + 5698082462823664606644467284196/325232303859151291990153313161217x_{1}^{4} - 8050561018631286777/4507999284756496\nu^{2}x_{1}^{3}x_{2}^{2} + 2632368756535455942470435700456/325232303859151291990153313161217\nu^{2}x_{1}^{3} + 33588569699909816188921/73877092278589456448x_{1}^{2}x_{2}^{2} - 733834052352629830779521785826/325232303859151291990153313161217x_{1}^{2} + 17365863547386556216569855/302674447065381003067456\nu^{2}x_{1}x_{2}^{2} - 114217609755680366913866473470/325232303859151291990153313161217\nu^{2}x_{1} + 16785409/16x_{2}^{4} - 201796989634276490199202783231/19840915354029855513077875712x_{2}^{2} + 122433328218157068146891280383/5203716861746420671842453010579472\)